
Xbox 360 File Specifications Reference

Introduction
This reference attempts to document the specifications of the custom data formats in use by the

Xbox 360 console. This data has either been discovered through reverse engineering or from

secondary sources in the Xbox 360 enthusiast community. Often, only the fields that are necessary

for data access have been properly deciphered and in all cases the names of data fields are at best

educated guesses. As far as the author is aware none of this information has been taken from or

derived from primary sources and should not be considered definitive. For definitive specifications

please consult Microsoft.

Contents
Introduction .. 1

XTAF .. 2

Secure Transacted File System.. 4

Xbox Database Format .. 8

Account Block .. 10

Appendix – Additional Tables ... 11

References .. 13

XTAF

XTAF is the Xbox 360 file system, sometimes referred to as FATX. XTAF is the file system that is

placed upon the raw hard drive of the Xbox 360. It is a derivative of the legacy File Allocation Table

file system that was introduced in Microsoft DOS. XTAF uses a big-endian byte order as opposed to

the little-endian FAT and many legacy configuration options of FAT have been removed. The

community knowledge of XTAF is well advanced with the documentation available from the Free60

project being excellent as well as there being several open source implementations of XTAF of

varying completeness to provide example code to help understanding.

The XTAF format contains three distinct sections, a 512 byte header, a file allocation table and a

number of 0x4000 byte long clusters containing file data and directory information.

Offset Length Content Description

0x000 4 XTAF Magic identifier

0x004 4 Serial number of the file system, could also be 0 or -1

0x008 4 Number of sectors per cluster

0x00C 4 1 Number of copies of the file allocation table

0x010 2 0 Unknown

0x012 0xFEE 0xFF Unused / unknown

XTAF Header Structure (Free60.org, 2010)

Files in XTAF are split into 0x4000 (16384) byte clusters that are not necessarily adjacent on disk. The

File Allocation Table is used to determine where the next cluster of a file resides. The file allocation

table is an array of cluster numbers that are either 4 bytes or 2 bytes wide depending on the size of

the disk (2 bytes if the number of clusters is less than 0xFFF4 and 4 bytes otherwise). Each entry in

the file allocation table provides the offset to the cluster that follows the current one with the

special values 0xFFFFFFF and 0x00000000 to denote that this is the last cluster in a chain and that

the cluster is unallocated respectively. The File Allocation Table is located at offset 0x1000 into the

partition.

Immediately after the File Allocation Table is the root directory cluster. The root directory cluster

contains a list of file records that represent the files and directories present in the root directory of

the file system. Unlike other directories the root directory can only occupy one cluster and so

accessing it does not require any File Allocation Table lookups. File records contain the name, size,

starting cluster and access/modified/created time stamps of files and directories. If a file record is

allocated with all bytes set to 0xFF this signifies the end of the directory.

Offset Size Description

0x00 1 length of the file name, or 0xE5 for deleted files

0x01 1 file flags

0x02 0x2A file name, padded with either 0x00 or 0xFF bytes

0x2C 4 starting cluster of file, 0 for empty files

0x30 4 file size, 0 for directories

0x34 2 creation date

0x36 2 creation time

0x38 2 access date

0x3A 2 access time

0x3C 2 update date

0x3E 2 update time

XTAF File Record Structure (Free60.org, 2010)

Unlike the FAT file system XTAF directories do not contain ‘.’ and ‘..’ records that point to the current

directory and parent directory. The time stamps and file flags are in the same format as the FAT file

system. The first cluster entry refers to both the index into the File Allocation Table of the cluster

and the offset of the cluster on disk. Cluster numbers start at number 2 as the root directory cluster

is considered cluster 1 before indexing into the File Allocation Table or calculating the offset of a

cluster subtract 1 from the cluster number. To calculate the file system offset of a cluster multiply

the cluster number by 0x4000 and add the offset of the root cluster.

Secure Transacted File System

Secure Transacted File System (STFS) is a contain file format used to store downloaded content as

well as locally generated data such as saved games and user profiles. The format has built in controls

to ensure the integrity of the data including a digital signature and tables containing SHA1 hashes of

each 0x1000 bytes of data. STFS files can be broken down into three types, LIVE, PIRS and CON files.

LIVE files contain downloaded content such as games and movies signed with an RSA key controlled

by Microsoft and PIRS files are similar except are not delivered by the Xbox LIVE service such as

system updates while CON files are created by the Xbox 360 locally and are signed by the console.

This arrangement makes LIVE and PIRS resistant to user tampering and CON files resistant from

corruption. STFS files are generally found on XTAF file systems.

STFS containers are the most complicated of the Xbox 360 file formats examined and are also the

least well documented format. Information online is limited to a description of its header format and

speculative descriptions of its verification techniques as well as two incomplete and contradictory

open source projects. This specification should be considered the most preliminary. The best public

information about this file format is the source code of an Xbox 360 modification library called X360

by DJ Shepherd (Shepherd DJ, 2010)

The STFS file starts with a long header of 0x971A bytes that includes the type of STFS file it is (LIVE,

PIRS or CONS), the digital signature of the file, the metadata structure version and large amounts of

metadata including up to two images and title/description text in multiple languages. After the

header there are the first hash tables and a table with the file listing. After this point the data starts

divided into 0x1000 byte blocks interspersed every 170 blocks with one or more tables containing

additional hashes.

STFS Header (Free60.org, 2011)

Offset Length Type Information

0x0 0x4 ascii string Magic “CON “, PIRS or LIVE

0x6 0x5 bytes Certificate Owner Console ID

0xB 0x14 ascii string Certificate Owner Console Part Number

0x1F 0x1 byte Certificate Owner Console Type (1 for devkit, 2 for retail)

0x20 0x8 ascii string Certificate Date of Generation

0x28 0x4 bytes Public Exponent

0x2C 0x80 bytes Public Modulus

0xAC 0x100 bytes Certificate Signature

0x1AC 0x80 bytes Signature

Alternatively for LIVE and PIRS packages the header changes as follows:

Offset Length Type Information

0x4 0x100 bytes Package Signature

0x104 0x128 bytes Padding

STFS Metadata (Free60.org, 2011)

Offset Length Type Information

0x22C 0x100 license entries (see below) Licensing Data (indicates package owner)
0x32C 0x14 bytes Content ID / Header SHA1 Hash
0x340 0x4 unsigned int Entry ID
0x344 0x4 signed int Content Type (see below)
0x348 0x4 signed int Metadata Version (see below)
0x34C 0x8 signed long Content Size
0x354 0x4 unsigned int Media ID
0x358 0x4 signed int Version (system/title updates)
0x35C 0x4 signed int Base Version (system/title updates)
0x360 0x4 unsigned int Title ID
0x364 0x1 Byte Platform (xbox/gfwl?)
0x365 0x1 Byte Executable Type
0x366 0x1 Byte Disc Number
0x367 0x1 Byte Disc In Set
0x368 0x4 unsigned int Save Game ID
0x36C 0x5 bytes Console ID
0x371 0x8 bytes Profile ID
0x379 0x1 Byte Volume Descriptor Struct Size (usually 0x24)
0x37A 0x24 STFS Volume Descriptor File System Volume Descriptor
0x39D 0x4 signed int Data File Count
0x3A1 0x8 signed long Data File Combined Size
0x3A9 0x8 bytes Reserved
0x3B1 0x4C bytes Padding
0x3FD 0x14 bytes Device ID
0x411 0x18 * 12 (0x900) unicode string Display Name
0xD11 0x18 * 12 (0x900) unicode string Display Description
0x1611 0x80 unicode string Publisher Name
0x1691 0x80 unicode string Title Name
0x1711 0x1 Byte Transfer Flags (see below)
0x1712 0x4 signed int Thumbnail Image Size
0x1716 0x4 signed int Title Thumbnail Image Size
0x171A 0x4000 Image Thumbnail Image
0x571A 0x4000 Image Title Thumbnail Image

STFS Metadata Version 2 (Free60.org, 2011)

Offset Length Type Information

0x3B1 0x10 bytes Series ID
0x3C1 0x10 bytes Season ID
0x3D1 0x2 signed short Season Number
0x3D5 0x2 signed short Episode Number
0x3D5 0x28 bytes Padding
0x171A 0x3D00 (thumbnail size) image Thumbnail Image
0x541A 0x300 (each 0x80 = different locale) image Additional Display Names
0x571A 0x3D00 (title thumbnail size) image Title Thumbnail Image
0x941A 0x300 (each 0x80 = different locale) image Additional Display Descriptions

If the metadata version field is set to 2 the above changes are present in the metadata format. The

STFS volume descriptor contains information about the location of the file listing table and the top

level hash table.

STFS Volume Descriptor (Free60.org, 2011)

Offset Length Type Information

0x0 0x1 byte Reserved

0x1 0x1 byte Block Seperation

0x2 0x2 signed short File Table Block Count

0x4 0x3 signed int24 File Table Block Number

0x7 0x14 bytes Top Hash Table Hash

0x1B 0x4 signed int Total Allocated Block Count

0x1F 0x4 signed int Total Unallocated Block Count

If bit 12, 13 and 15 of the Entry ID are on ((Entry ID + 0xFFF) & 0xF000) >> 0xC == 0xB) there are 2

hash tables every 0xAA (170) blocks, evidence suggests that this is the case in CON files. The second

hash table contains almost identical information to the first and it is hypothesized that the

duplication is to support transactional integrity. Hash tables contain 170 records each containing a

SHA1 hash of the relevant block as well as a status byte and the block number of the following block.

STFS Hash Tables

Offset Length Type Information

0x0 0x14 bytes SHA1 Hash of Block

0x14 0x01 byte Status (0x00, 0x40, 0x80, 0xC0)

0x15 0x03 24 bit integer Next Block Index

STFS Hash Status Values

Value Information

0x00 Unused Block

0x40 Free Block (previously used)

0x80 Used Block

0xC0 Newly Allocated Block

The file listing table contains a series of file listing structures that describe a file or directory inside

the STFS archive. The File Listing structure contains both big-endian and little-endian values and the

path indicator value is an offset into the File Listing table where -1 (0xFFFF) indicates the root

directory. Time stamps in the File Listing table are the same as XTAF (and FAT). Bit 6 of byte 0x28

indicates whether or not the entry is a directory.

STFS File Listing (Free60.org, 2011)

Offset Length Type Information

0x0 0x28 ascii string File name, null-padded

0x28 0x1 byte Length of file name, plus flags

0x29 0x3 signed int24 Number of blocks allocated for file (little endian)

0x2C 0x3 signed int24 Copy of 0x29

0x2F 0x3 signed int24 Starting block number of file (little endian)

0x32 0x2 signed short Path indicator (big endian)

0x34 0x4 unsigned int Size of file in bytes (big endian)

0x38 0x4 signed int Update date/time stamp of file

0x3C 0x4 signed int Access date/time stamp of file

Hash tables are interspersed with data so that it is not trivial to convert a block number into an

offset in the file. Block numbers refer to data blocks only and do not increment for hash table blocks.

The following code segment demonstrates how to adjust a block number to take into account

embedded hash tables. The variable table_size_shift is 1 if ((Entry ID + 0xFFF) & 0xF000) >> 0xC ==

0xB) is True and 0 otherwise. The return value can be multiplied by 0x1000 and then added to

0xC000 to find the location of the block on disk.

block_adjust = 0

if block_num >= 0xAA:

 block_adjust += ((block_num // 0xAA)) + 1 << table_size_shift

if block_num > 0x70E4:

 block_adjust += ((block_num // 0x70E4) + 1)<< table_size_shift

return block_adjust + block_num

Every 0xAA blocks there is a hash table containing the hashes of the next 0xAA blocks. Every 0x70E4

(0xAA * 0xAA) blocks there is a hash table presumably containing hashes of the previous 0xAA hash

blocks. Finally, every 0x4AF768 (0xAA * 0xAA * 0xAA) there is a table presumably containing the

hashes of the 0x70E4 hash tables.

Xbox Database Format

The Xbox Database Format (XDBF) is a generic container format for storing records and files. XDBF is

the format of Gamer Profile Data (GPD) files which are used to store information relevant to a single

user including settings, information about the games played, achievement information for each

game and image resources. XDBF is also used by Statistics, Presence, Achievement files (SPA) which

are embedded in game software bundles and are used to generate GPD files for each user that plays

the game. GPD and SPA files are both usually found inside STFS containers. XDBF files have features

to simplify the process of syncing them with remote servers.

The XDBF format is well understood by the Xbox 360 enthusiast community and is documented by

the Free60 project. The file format is composed of a header, a table of record entries, a table of free

space, and the data area. These regions are adjacent and their sizes can be calculated from header

information. The data area is not divided into blocks or clusters and entries are contiguous inside the

XDBF area and are specified by a start offset and a length. The XDBF header specifies the length of

the entry and free space tables as well as how many records in those tables have been used.

XDBF Header (Free60.org, 2010)

Offset Length Type Information

0x0 0x4 ascii string Magic (0x58444246) “XDBF”

0x4 0x4 unsigned int Version (0x10000)

0x8 0x4 unsigned int Entry Table Length (in number of entries)

0xC 0x4 unsigned int Entry Count

0x10 0x4 unsigned int Free Space Table Length (in number of entries)

0x14 0x4 unsigned int Free Space Table Entry Count

XDBF Entry Table (Free60.org, 2010)

Offset Length Type Information

0x0 0x2 unsigned short Namespace
0x2 0x8 unsigned long ID
0xA 0x4 unsigned int Offset
0xE 0x4 unsigned int Length

Offset is not the offset from the start of the file but rather the offset from the end of the free space

table. Namespaces describe the type of entry in the XDBF file and vary depending on the particular

type of XDBF file. GPD files contain achievement records, image records, setting records, title

records, strings and achievement security records. String entries are UTF-16 big-endian strings and

image entries are PNG files both of the length specified in the entry record. Other strings in

achievement and title entries are also UTF-16 big-endian. The Setting entry structure is less well

documented. In a Setting entry the Setting ID field determines the size and structure of the payload

and the Content ID field determines which setting this entry corresponds to.

GPD Namespaces (Free60.org, 2011)

Value Description

1 Achievement

2 Image

3 Setting

4 Title

5 String

6 Achievement Security

Achievement Entries (Free60.org, 2011)

Offset Length Type Information

0x0 0x4 unsigned int Magic (0x1C)
0x4 0x4 unsigned int Achievement ID
0x8 0x4 unsigned int Image ID
0xC 0x4 signed int Gamerscore
0x10 0x4 unsigned int Flags (see below)
0x14 0x8 signed long Unlock Time
0x18 null terminated unicode string Name
0x18 + Name length null terminated unicode string Locked Description
0x18 + Name length + Locked Description length null terminated unicode string Unlocked Description

 Title Entries (Free60.org, 2011)

Offset Length Type Information

0x0 0x4 unsigned int Title ID
0x4 0x4 signed int Achievement Count
0x8 0x4 signed int Achievement Unlocked Count
0xC 0x4 signed int Gamerscore Total
0x10 0x4 signed int Gamerscore Unlocked
0x14 0x8 signed long Unknown
0x1C 0x4 signed int Unknown
0x20 0x8 signed long Last Played Time
0x28 null terminated unicode string Title Name

Setting Entries

Offset
Length Type Information

0x0 0x8 bytes Content ID
0x8 0x4 signed int Setting ID
0xC Variable Bytes Data

Setting ID

Value

Description Data

0 Context Int

1 Unsigned Integer Unsigned Integer

2 Long 64 bit Integer

3 Double Double

4 String 32 bit Integer length followed by UTF-16 BE text

5 Float Float

6 Binary 32 bit Integer length followed by binary data

7 Timestamp 64 bit Microsoft File Time timestamp

Account Block

The Account Block is a file inside a STFS archive that describes a Xbox 360 Profile. The Account Block

is 404 bytes long and is encrypted with RC4 and HMAC-SHA1. The RC4 key is the first 16 bytes of the

HMAC-SHA1 digest of the first 16 bytes of the Account file encrypted with the key

E1BC159C73B1EAE9AB3170F3AD47EBF3 (TheFallen93, 2010).

Very little information was available about the structure of this file and most of the following

information about the decrypted Account Block has been derived from reverse engineering. It is

worth emphasising that the layout and purpose of many fields of the Account Block is still unknown.

Account Block

Offset Length Type Information

0x0 0x1 byte Account Type (0x20 = Live)
0x1 0x4 bytes Account Passcode
0x10 0x1E UTF-16-BE GamerTag
0x30 0x8 bytes XUID (Live Only)
0x39 0x1 byte Account Level (0x30 = Silver, 0x60 = Gold)
0x3C 0x4 ASCII Console Type (PROD, PART)

Appendix – Additional Tables

STFS Content Types (Free60.org, 2011)

Value Description

0xD0000 Arcade Title
0x9000 Avatar Item
0x40000 Cache File
0x2000000 Community Game
0x80000 Game Demo
0x20000 Gamer Picture
0xA0000 Game Title
0xC0000 Game Trailer
0x400000 Game Video
0x4000 Installed Game
0xB0000 Installer
0x2000 IPTV Pause Buffer
0xF0000 License Store
0x2 Marketplace Content
0x100000 Movie
0x300000 Music Video
0x500000 Podcast Video
0x10000 Profile
0x3 Publisher
0x1 Saved Game
0x50000 Storage Download
0x30000 Theme
0x200000 TV
0x90000 Video
0x600000 Viral Video
0x70000 Xbox Download
0x5000 Xbox Original Game
0x60000 Xbox Saved Game
0x1000 Xbox 360 Title
0x5000 Xbox Title
0xE0000 XNA

GPD Content ID (Shepherd DJ, 2010)

GPDID Description

 0x10040004 GamerZone
 0x10040005 Region
 0x10040006 Gamerscore
 0x10040007 Presence State (Unknown)
 0x10040008 Camera
 0x5004000B Reputation
 0x1004000C Mute Setting
 0x1004000D Voice Output Speakers
 0x1004000E Voice Volume Setting
 0x4064000F Gamer Picture Reference
 0x40640010 Personal Picture Reference
 0x402C0011 Motto
 0x10040012 Titles Played
 0x10040013 Achievements Unlocked
 0x10040015 Difficulty Setting
 0x10040018 Control Sensitivity
 0x1004001D Preferred Color 1
 0x1004001E Preferred Color 2
 0x10040022 Auto Aim
0x10040024 Auto Center
0x10040024 Action Movement Control
0x10040038 Gamerscore Earned On Title
0x10040039 Achievements Unlocked on Title
0x1004003A User Tier (Unknown)
0x1004003B Has Messanger Account
0x1004003C Messanger Auto Signin
0x1004003D Save Live Password
0x1004003E Public Friends List
0x1004003F Service Type (Unknown)
0x41040040 Account Name
0x40520041 Account Location
0x41900042 Gamercard URL
0x43E80043 Account Bio
0x10000000 Sync ID Table
0x20000000 Sync Record
0x10042004 Xbox.com Favorite Game (1)
0x10042005 Xbox.com Favorite Game (2)
0x10042006 Xbox.com Favorite Game (3)
0x10042007 Xbox.com Favorite Game (4)
0x10042008 Xbox.com Favorite Game (5)
0x10042009 Xbox.com Favorite Game (6)
0x1004200A Xbox.com Platforms Owned
0x1004200B Xbox.com Connection Speed
0x700803F4 User Crux Last Change Time (Unknown)

References
Free60.org. (2011, 01). GPD. Retrieved 01 24, 2011, from Free60 Wiki: http://free60.org/GPD

Free60.org. (2011, 01). STFS. Retrieved 01 24, 2011, from Free60 Wiki: http://free60.org/STFS

Free60.org. (2010, 08). XDBF. Retrieved 01 24, 2011, from Free60 Wiki: http://free60.org/XDBF

Free60.org. (2010, 03). XTAF. Retrieved 01 24, 2011, from Free60 Wiki: http://free60.org/XTAF

Shepherd DJ. (2010, 03). Programs. Retrieved 01 24, 2011, from SkunkieButt's Blog:

http://skunkiebutt.com/?page_id=362

TheFallen93. (2010, 09). XAM Systemlink Patch. Retrieved 01 24, 2011, from TheFallen93's Blog:

http://webcache.googleusercontent.com/search?q=cache:http://thefallen93.com/Public/Xbox/xam

_systemlink.txt

